The period of oscillation of a simple pendulum in the experiment is recorded as 2.63 s, 2.56 s, 2.42 s, 2.71 s and 2.80 s respectively. The average absolute error is

(1) 0.1 s

(2) 0.11 s

(3) 0.01 s

(4) 1.0 s

Concept Videos :-

#3 | Error Analysis : Definitions, Mathematical Modeling
#4 | Error Analysis : Modeling of Errors & Propagation of Error
#5 | Error Analysis : Propagation of Error (Division) & Example

Concept Questions :-

Errors

(2) Average value $=\frac{2.63+2.56+2.42+2.71+2.80}{5}$

$=2.62\text{\hspace{0.17em}}\mathrm{sec}$

Now $|\Delta {T}_{1}|\text{\hspace{0.17em}}=\text{\hspace{0.17em}}2.63-2.62=0.01$

$|\Delta {T}_{2}|\text{\hspace{0.17em}}=\text{\hspace{0.17em}}2.62-2.56=0.06$

$|\Delta {T}_{3}|\text{\hspace{0.17em}}=\text{\hspace{0.17em}}2.62-2.42=0.20$

$|\Delta {T}_{4}|\text{\hspace{0.17em}}=\text{\hspace{0.17em}}2.71-2.62=0.09$**

$|\Delta {T}_{5}|\text{\hspace{0.17em}}=\text{\hspace{0.17em}}2.80-2.62=0.18$

Mean absolute error

$\Delta T=\frac{|\Delta {T}_{1}|+|\Delta {T}_{2}|+|\Delta {T}_{3}|+|\Delta {T}_{4}|+|\Delta {T}_{5}|}{5}$

$=\frac{0.54}{5}=0.108\text{\hspace{0.17em}}=0.11sec$

Difficulty Level:

• 23%
• 54%
• 21%
• 4%