A particle performing S.H.M. is at rest at points P and Q which are at a distance a and b from point O. It has velocity v when it is halfway between P and Q. The time period of oscillation is:

                

1.  b - ab×av

2.  πb - av

3.  b - abav

4.  Data is insufficient to answer.

Subtopic:  Simple Harmonic Motion |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The time period of a simple pendulum in a stationary lift is T. If the lift moves upwards with an acceleration g, then the new time period will be

1.  Infinite

2.  0.6T

3.  1.67T

4.  0.707T

Subtopic:  Simple Harmonic Motion |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Acceleration-time (\(a-t\)) graph for a particle performing S.H.M. is shown in the figure. Select the incorrect statement.

             
 

1. displacement of a particle at \(A\) is negative.
2. the potential energy of the particle at \(C\) is minimum.
3. the velocity of the particle at \(B\) is positive.
4. speed of particle at \(D\) is decreasing.

Subtopic:  Simple Harmonic Motion |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A particle is executing S.H.M. such that its acceleration 'a' is a function of displacement x as a = -βx - 6. The time period of the oscillation is

1.  πβ

2.  π2β

3.  2π2β

4.  2πβ

Subtopic:  Simple Harmonic Motion |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A particle of mass 0.5 kg is executing S.H.M. such that its potential energy is 5 J at the mean position. If its total mechanical energy is 9 J and the amplitude of oscillation is 1 cm, then the time period of oscillation of the particle is:

1.  2π100 s

2.  π200 s

3.  2π25 s

4.  2π s

Subtopic:  Energy of SHM |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The total mechanical energy of a linear harmonic oscillator is \(600\) J. At the mean position, its potential energy is \(100\) J. The minimum potential energy of the oscillator is: 
1. \(50\) J
2. \(500\) J
3. \(0\) 
4. \(100\) J

Subtopic:  Energy of SHM |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A general graph showing variation in the potential energy \((P.E)\) of a particle with time while executing S.H.M. is:

1. 2.
3. 4.
Subtopic:  Energy of SHM |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two simple pendulums of lengths 1.44 m and 1 m start S.H.M. together in the same phase. They will be in the same phase again after

1.  6 vibrations of the longer pendulum

2.  6 vibrations of the smaller pendulum

3.  5 vibrations of the smaller pendulum

4.  4 vibrations of the longer pendulum

Subtopic:  Angular SHM |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A spring has equilibrium elongation 0.1 m when suspended vertically with a load. If the load is slightly displaced vertically downward and released, then the time period of SHM of the system will be approximately

1.  0.1 s

2.  0.4 s

3.  0.6 s

4.  0.3

Subtopic:  Combination of Springs |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Select the correct statements regarding potential energy \((U)\) in the simple harmonic motion of a particle along \(x\text-\)axis:

1. \(\frac{dU}{dx}<0\) for all positions of a particle performing SHM.
2. \(\frac{dU}{dx}>0\) for all time.
3. Potential energy is minimum at the equilibrium position of a particle performing SHM.
4. Potential energy increases linearly with the position as the particle moves away from the equilibrium position.

Subtopic:  Energy of SHM |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh