The potential energy of a particle of mass m executing SHM is given by U = A(1 - cos2x), where x is the instantaneous displacement of the particle. The time period of oscillation is

1.  πmA

2.  2πmA

3.  πm2A

4.  2πm2A

Subtopic:  Energy of SHM |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A uniform rod of length l is suspended at l4 from one end and made to undergo small oscillations. The time period of oscillation is:

1.  2π7l12g

2.  2π3l7g

3.  2π7l3g

4.  2π4l5g

Subtopic:  Angular SHM |
 60%
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints

A simple pendulum with a metallic bob has a time period T. The bob is now immersed in a nonviscous liquid and the time period is found to be 5T. The ratio of the density of the metal to that of liquid is 

1.  1/4

2.  4/3

3.  5/4

4.  7/3

Subtopic:  Angular SHM |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A particle executes SHM with time period \(T\). The time period of oscillation of total energy is:
1. \(T\)
2. \(2T\)
3. \(\frac{T}{2}\)
4. Infinite

Subtopic:  Energy of SHM |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A particle is executing linear simple harmonic motion with an amplitude \(a\) and an angular frequency \(\omega\). Its average speed for its motion from extreme to mean position will be:
1. \(\frac{a\omega}{4}\)
2. \(\frac{a\omega}{2\pi}\)
3. \(\frac{2a\omega}{\pi}\)
4. \(\frac{a\omega}{\sqrt{3}\pi}\)

Subtopic:  Linear SHM |
 55%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The time period of oscillation of a simple pendulum of length equal to half of the diameter of the earth is about 

1.  60 minute

2.  84.6 minute

3.  42.3 minute

4.  24 hour

Subtopic:  Angular SHM |
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints

The time period of the given spring-mass system is:

            
1. \(2\pi \sqrt{\frac{m}{k}}\)
2. \(2\pi \sqrt{\frac{m}{2k}}\)
3. \(2\pi \sqrt{\frac{2m}{\sqrt{3}k}}\)
4. \(\pi \sqrt{\frac{m}{k}}\)

Subtopic:  Combination of Springs |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The equation of simple harmonic motion is given by X = (4 cm)sin6.28 t + 5π3then maximum velocity of the particle in simple harmonic motion is: 

1.  25.12 m/s 

2.  25.12 cm/s 

3.  12.56 m/s 

4.  12.56 cm/s

Subtopic:  Simple Harmonic Motion |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A spring pendulum is on the rotating table. The initial angular velocity of the table is \(\omega_{0}\) and the time period of the pendulum is \(T_{0}.\) Now the angular velocity of the table becomes \(2\omega_{0},\) then the new time period will be:
1. 
\(2T_{0}\)
2. \(T_0\sqrt{2}\)
3. remains the same
4. \(\frac{T_0}{\sqrt{2}}\)

Subtopic:  Angular SHM |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

If the vertical spring-mass system is dipped in a non-viscous liquid, then:

1. only mean position is changed.
2. only the time period is changed.
3. time period and mean position both are changed.
4. time period and mean position both remain the same.
Subtopic:  Combination of Springs |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh