Two equations of S.H.M. are y1=asin(ωt-α) and y2=bcos(ωt-α). The phase difference between the two is:
1. \(0^\circ\)
2. \(\alpha^\circ\)
3. \(90^\circ\)
4. \(180^\circ\)

Subtopic:  Simple Harmonic Motion |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A ring of radius R is hung by a nail on its periphery such that it can freely rotate in its vertical plane. The time period of the ring for small oscillations is:

1.  T = 2πRg

2.  T = πRg

3.  T = 2π2Rg

4.  T = 2π3R5g

Subtopic:  Simple Harmonic Motion |
 57%
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints

If the potential energy U (in J) of a body executing SHM is given by U = 20 + 10 (sin2100πt), then the minimum potential energy of the body will be:

1. Zero 2. 30 J
3. 20 J 4. 40 J
Subtopic:  Energy of SHM |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The equation of S.H.M. is given as x = Asin(0.02πt), where t is in seconds. With what time period the potential energy oscillates? 

1.  200 s

2.  100 s

3.  50 s

4.  10 s

Subtopic:  Energy of SHM |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

In a stationary lift, a spring-block system oscillates with a frequency \(f.\) When the lift accelerates, the frequency becomes \(f'\) . Then:

1. \(f'>f\)
2. \(f'<f\)
3. \(f'=f\)
4. any of the above depending on the value of the acceleration of the lift.
Subtopic:  Spring mass system |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The kinetic energy (K) of a simple harmonic oscillator varies with displacement (x) as shown. The period of the oscillation will be: (mass of oscillator is 1 kg)

                     

1. π2 sec 2.  12 sec
3.  π sec 4. 1 sec
Subtopic:  Energy of SHM |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The equation of an SHM is given as y=3sinωt + 4cosωt where y is in centimeters. The amplitude of the SHM will be?

1. 3 cm 2. 3.5 cm
3. 4 cm 4. 5 cm
Subtopic:  Linear SHM |
 90%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The equation of a SHM is given as x = 5sin4πt + π3, where \(\mathrm t\) is in seconds and \(\mathrm x\) in meters. During a complete cycle, the average speed of the oscillator is:
1. zero

2. \(10\) m/s 

3. \(20\) m/s

4. \(40\) m/s

Subtopic:  Simple Harmonic Motion |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The equation of a simple harmonic oscillator is given as y = Asin20πt + π3, where t is in seconds. The frequency with which kinetic energy oscillates is

1.  5 Hz

2.  10 Hz 

3.  20 Hz

4.  40 Hz

Subtopic:  Energy of SHM |
 63%
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints

What is the period of oscillation of the block shown in the figure?

      

1.  \(2\pi \sqrt{\frac{M}{k}}\)

2. \(2\pi \sqrt{\frac{4M}{k}}\)
3. \(\pi \sqrt{\frac{M}{k}}\)
4. \(2\pi \sqrt{\frac{M}{2k}}\)

Subtopic:  Combination of Springs |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh