1. Determine the relationship between the standard cell potentials and equilibrium constants for the following reactions:
| (a) |
\(A+B \rightleftharpoons C+D \text { }\) with \(E^0=x\) volts and \(K_{e q}=K_1\) |
| (b) |
\(2 A+2 B \rightleftharpoons 2 C+2 D \text { }\) with \(E^0=y\) volts and \(K_{e q}=K_2\) |
1.
\(x=y, K_1=K_2\)
2.
\(x=2 y, K_1=2 K_2\)
3.
\(x=y, K_1^2=K_2\)
4.
\(x^2=y, K_1^2=K_2\)
2.
| Assertion (A): |
EMF of the cell is the potential difference between the electrode potentials of the cathode and anode when no current is drawn through the cell. |
| Reason (R): |
The anode is kept on the right side and the cathode on the left side while representing the galvanic cell. |
| 1. |
Both (A) and (R) are True and (R) is the correct explanation of (A). |
| 2. |
Both (A) and (R) are True but (R) is not the correct explanation of (A). |
| 3. |
(A) is True but (R) is False. |
| 4. |
Both (A) and (R) are false |
3. Consider the following electrochemical cell at
\(298~ K:\)
\(\small {\begin{aligned} & \operatorname{Pt}(\mathrm{s})\left|\mathrm{H}_2(\mathrm{g}), (1 \mathrm{bar})\right| \mathrm{H}^{+}(\mathrm{aq}), (1 \mathrm{M}) \| \mathrm{M}^{4+}(\mathrm{aq}), |\mathrm{M}^{2+}(\mathrm{aq}) \mid \mathrm{Pt}(\mathrm{~s}) \end{aligned}}\)
When
\(\frac{\left[\mathrm{M}^{2+}(\mathrm{aq})\right]}{\left[\mathrm{M}^{4+}(\mathrm{aq})\right]}=10^{\mathrm{x}},\) find the value of
\(\mathrm {x}\).
[Given:
\(\mathrm{E}_{\text {cell }}=0.092 \mathrm{~V}\);
\(\mathrm{E}_{\text {cell}}^0=0.151 \mathrm{~V} ; 2.303 \frac{\mathrm{RT}}{\mathrm{~F}}=0.059 \mathrm{~V}\)]
| 1. |
\(-2\), |
2. |
\(-1\) |
| 3. |
\(1\) |
4. |
\(2\) |
4. Consider the given reaction:
\(\mathrm{Cu}(\mathrm{s})+\mathrm{Sn}^{2+}(0.001 \mathrm{M}) \rightarrow \mathrm{Cu}^{2+}(0.01 \mathrm{M})+\mathrm{Sn}(\mathrm{s})\)
What is the Gibbs free energy change for the above reaction at \(298 ~\text{K}\)?
[Given: E⊖Cell= \(-0.48 \mathrm{~V}\) and \(F=96500 \mathrm{C} \mathrm{mol}^{-1}\)]
1. \(383 \times 10^{-1} \mathrm{~kJ} / \mathrm{mol}\)
2. \(783 \times 10^{-1} \mathrm{~kJ} / \mathrm{mol}\)
3. \(983 \times 10^{-3} \mathrm{~kJ} / \mathrm{mol}\)
4. \(983 \times 10^{-1} \mathrm{~kJ} / \mathrm{mol}\)
5. The incorrect equation among the following is:
| 1. |
\(\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{NaBr}}-\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{NaCl}}=\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{KBr}}-\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{KCl}}\) |
| 2. |
\(\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{KCl}}-\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{NaCl}}=\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{KBr}}-\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{NaBr}}\) |
| 3. |
\( \left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{H}_2 \mathrm{O}}=\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{HCl}}+\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{NaOH}}-\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{NaCl}} \) |
| 4. |
\(\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{NaBr}}-\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{Nal}}=\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{KBr}}-\left(\Lambda_{\mathrm{m}}^0\right)_{\mathrm{NaBr}}\) |
6. If the molar conductivity
\(\left(\Lambda_{\mathrm{m}}\right)\) of a
\(0.050 ~\text{mol}~ \text{L}^{-1}\) solution of a monobasic weak acid is
\(90 ~\text{S} ~\text{cm}^2 ~\text{mol}^{-1}\), then its degree of dissociation will be: [Assume
\(\Lambda_{+}^0=349.6~ \mathrm{S ~cm}^2 \mathrm{~mol}^{-1}\) and
\(\mathrm{\Lambda}_{-}^{\circ}=50.4 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1} \)]
| 1. |
\( 0.225 \) |
2. |
\( 0.215 \) |
| 3. |
\(0.115 \) |
4. |
\(0.125\) |
7. The half-cell reaction at the anode during the electrolysis of aqueous sodium chloride solution is represented by :
1. Na+(aq) + e- ⟶ Na(s) ; \(E_{cell}^{o} \ = \ -2.71 \ V \)
2. 2H2O(l) ⟶ O2(g) + 4H+(aq) + 4e- ; \(E_{cell}^{o} \) = 1.23 V
3. H+(aq) + e- ⟶ \(\frac{1}{2}\)H2(g) ; \(E_{cell}^{o} \) = 0.00 V
4. Cl-(aq) ⟶ \(\frac{1}{2}\)Cl2(g) + e- ; \(E_{cell}^{o}\) \(= 1 . 36 V\)
8. The correct statement regarding the discharge of lead storage batteries is:
1. SO2 is evolved
2. Lead sulphate is consumed
3. Lead is formed
4. Sulphuric acid is consumed
9. A solution of 0.02 M
\(\text{CH}_3\text{COOH}\) has a specific conductance (
\(\kappa\)) of
\(5 \times 10^{-5} \, \text{S cm}^{-1}\). Given that the limiting molar conductance of
\(\text{CH}_3\text{COOH}\) is
\(400 \, \text{S cm}^2 \text{ mol}^{-1}\), what is the dissociation constant (
\(\mathrm{K_a}\)) of
\(\text{CH}_3\text{COOH}\)?
| 1. |
\(8 \times 10^{-7}\) |
2. |
\(6 \times 10^{-7}\) |
| 3. |
\(10 \times 10^{-7}\) |
4. |
\(4 \times 10^{-7}\) |
10. Which metal is used as a protective coating during the process of galvanization?
*If above link doesn't work, please go to test link from where you got the pdf and fill OMR from there
CLICK HERE to get FREE ACCESS for 2 days of ANY NEETprep course