1. | \(0.7~\text{kg-m}^2\) | 2. | \(3.22~\text{kg-m}^2\) |
3. | \(30.8~\text{kg-m}^2\) | 4. | \(0.07~\text{kg-m}^2\) |
The magnetic flux linked to a circular coil of radius \(R\) is given by:
\(\phi=2t^3+4t^2+2t+5\) Wb.
What is the magnitude of the induced EMF in the coil at \(t=5\) s?
1. \(108\) V
2. \(197\) V
3. \(150\) V
4. \(192\) V
(a) | the distance between the objective and the eyepiece is \(20.02\text{m}.\) |
(b) | the magnification of the telescope is \(-1000\). |
(c) | the image of the planet is erect and diminished. |
(d) | the aperture of the eyepiece is smaller than that of the objective. |
1. | (a), (b), and (c) | 2. | (b), (c), and (d) |
3. | (c), (d), and (a) | 4. | (a), (b), and (d) |
1. | zero | 2. | \(\dfrac{-q^2}{4\pi\varepsilon_0d}\) |
3. | \(\dfrac{-q^2}{4\pi\varepsilon_0d}\Big(3-\dfrac{1}{\sqrt2}\Big)\) | 4. | \(\dfrac{-q^2}{4\pi\varepsilon_0d}\Big(6-\dfrac{1}{\sqrt2}\Big)\) |
1. | 2. | ||
3. | 4. |