Hydrolysis of sucrose is given by the following reaction
Sucrose + H2O Glucose + Fructose
If the equilibrium constant (Kc) is 21013 at 300 K, the value of at the same temperature will be:
1. 8.314 J mol–1 K–1300 Kln (21013)
2. 8.314 J mol–1 K–1300 Kln (31013)
3. –8.314 J mol–1 K–1300 Kln (41013)
4. –8.314 J mol–1 K–1300 Kln (21013)
A process among the following shows decrease in entropy is :
1. \(2 \text H \left(g\right)\rightarrow\text H_{2} \left(g\right)\)
2. Evaporation of water
3. Expansion of a gas at a constant temperature
4. Sublimation of solid to gas
For a given reaction, ∆H = 35.5 kJ mol–1 and ∆S = 83.6 J K–1 mol–1. The reaction is spontaneous at:
(Assume that ∆H and ∆S do not vary with temperature)
1. T > 425K
2. All temperatures
3. T > 298K
4. T < 425K
The correct statement for a reversible process in a state of equilibrium is:
1. G = – 2.30RT log K
2. G = 2.30RT log K
3. Go = – 2.30RT log K
4. Go = 2.30RT log K
For the reaction:
\(\mathrm{X}_2 \mathrm{O}_4(l) \rightarrow 2 \mathrm{XO}_2(g)\)
with the given values \(\Delta U = 2.1 \, \text{kcal}\) and \(\Delta S = 20 \, \text{cal K}^{-1}\) at \(300 \, \text{K}\), what is the value of \(\Delta G\)?
1. +2.7 kcal
2. –2.7 kcal
3. +9.3 kcal
4. –9.3 kcal
In which of the following reactions, the standard reaction entropy change
is positive, and standard Gibb's energy change
decreases sharply with increasing temperature?
1. | C(graphite) + \(\frac{1}{2}\)O2(g) → CO(g) |
2. | CO(g) + \(\frac{1}{2}\)O2(g) → CO2(g) |
3. | Mg(s) + \(\frac{1}{2}\)O2(g) → MgO(s) |
4. | \(\frac{1}{2}\)C(graphite) + \(\frac{1}{2}\)O2(g) → \(\frac{1}{2}\)CO2(g) |
Standard entropies of X2, Y2 and XY3 are 60, 40 and 50JK-1mol-1 respectively. For the reaction
to be at equilibrium, the temperature should be:
1. 750 K
2. 1000 K
3. 1250 K
4. 500 K
For vaporization of water at 1 atmospheric pressure, the values of ∆H and ∆S are 40.63 kJ mol–1 and 108.8 JK–1 mol–1, respectively. The temperature when Gibbs energy change (∆G) for this transformation will be zero, is:
1. 393.4 K
2. 373.4 K
3. 293.4 K
4. 273.4 K