The mass of a Li37 nucleus is \(0.042~\text{u}\) less than the sum of the masses of all its nucleons. The binding energy per nucleon of the Li37 nucleus is near:
1. \(4.6~\text{MeV}\)
2. \(5.6~\text{MeV}\)
3. \(3.9~\text{MeV}\)
4. \(23~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 74%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If \(M(A,~Z)\)\(M_p\), and \(M_n\) denote the masses of the nucleus \(^{A}_{Z}X,\) proton, and neutron respectively in units of \(u\) \((1~u=931.5~\text{MeV/c}^2)\) and represent its binding energy \((BE)\) in \(\text{MeV}\). Then:

1. \(M(A, Z) = ZM_p + (A-Z)M_n- \dfrac{BE}{c^2}\)
2. \(M(A, Z) = ZM_p + (A-Z)M_n+ BE\)
3. \(M(A, Z) = ZM_p + (A-Z)M_n- BE\)
4. \(M(A, Z) = ZM_p + (A-Z)M_n+ \dfrac{BE}{c^2}\)
Subtopic:  Mass-Energy Equivalent |
 73%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Two nuclei have their mass numbers in the ratio of \(1:3.\) The ratio of their nuclear densities would be:
1. \(1:3\)
2. \(3:1\)
3. \((3)^{1/3}:1\)
4. \(1:1\)

Subtopic:  Nucleus |
 81%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The binding energy of deuteron is \(2.2~\text{MeV}\) and that of \(_2\mathrm{He}^{4}\) is \(28~\text{MeV}\). If two deuterons are fused to form one \(_{2}\mathrm{He}^{4}\)then the energy released is:
1. \(25.8~\text{MeV}\)
2. \(23.6~\text{MeV}\)
3. \(19.2~\text{MeV}\)
4. \(30.2~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 74%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A certain mass of hydrogen is changed to Helium by the process of fusion. The mass defect in the fusion reaction is \(0.02866~\text{u}.\)The energy liberated per nucleon is:
(given \(1~\mathrm{u} = 931~\text{MeV}\) )
1. \(26.7~\text{MeV}\)
2. \(6.675~\text{MeV}\)
3. \(13.35~\text{MeV}\)
4. \(2.67~\text{MeV}\)
Subtopic:  Mass-Energy Equivalent |
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The Binding energy per nucleon of \(^{7}_{3}\mathrm{Li}\) and \(^{4}_{2}\mathrm{He}\) nucleon are \(5.60~\text{MeV}\) and \(7.06~\text{MeV}\), respectively. In the nuclear reaction \(^{7}_{3}\mathrm{Li} + ^{1}_{1}\mathrm{H} \rightarrow ^{4}_{2}\mathrm{He} + ^{4}_{2}\mathrm{He} +Q\), the value of energy \(Q\) released is:
1. \(19.6~\text{MeV}\)
2. \(-2.4~\text{MeV}\)
3. \(8.4~\text{MeV}\)
4. \(17.3~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 68%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The energy equivalent of \(0.5~\text g\) of a substance is:
1. \(4.5\times10^{13}~\text J\) 
2. \(1.5\times10^{13}~\text J\) 
3. \(0.5\times10^{13}~\text J\) 
4. \(4.5\times10^{16}~\text J\) 

Subtopic:  Mass-Energy Equivalent |
 65%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The gravitational force between \(\text H\text-\)atom and another particle of mass \(m\) will be given by Newton's law \(F=\dfrac{GMm}{r^2},\) where \(r\) is in \(\text{km}\) and;
1. \(M = m_{\text{proton}}+ m_{\text{electron}}.\)
2. \(M = m_{\text{proton}}+ m_{\text{electron}}-\frac{B}{c^2}\left(B= 13.6~\text{eV}\right)\).
3. \(M\) is not related to the mass of the hydrogen atom.
4. \(M = m_{\text{proton}}+ m_{\text{electron}}-\frac{|V|}{c^2}(|V|=\) magnitude of the potential energy of electron in the \(\text H\text-\)atom).
Subtopic:  Nuclear Binding Energy |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

When a nucleus in an atom undergoes a radioactive decay, the electronic energy levels of the atom:
1. do not change for any type of radioactivity
2. change for \(\alpha\) and \(\beta\text-\)radioactivity but not for \(\gamma\text-\)radioactivity
3. change for \(\alpha\text-\)radioactivity but not for others
4. change for \(\beta\text-\)radioactivity but not for others
Subtopic:  Types of Decay |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

Tritium is an isotope of hydrogen whose nucleus triton contains \(2\) neutrons and \(1\) proton. Free neutrons decay into\(p+e^{-1}+\nu^{-1}.\) If one of the neutrons in Triton decays, it would transform into \(\mathrm{He}^{3}\) nucleus. This does not happen. This is because:
 
1. triton energy is less than that of a \(\mathrm{He}^{3}\) nucleus.
2. the electron created in the beta decay process cannot remain in the nucleus.
3. both the neutrons in Triton have to decay simultaneously resulting in a nucleus with \(3\) protons, which is not a \(\mathrm{He}^{3}.\) nucleus.
4. free neutrons decay due to external perturbations which is absent in the Triton nucleus.
Subtopic:  Types of Decay |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital