A wire cd of length \(l\) and mass \(m\) is sliding without friction on conducting rails \(ax\) and \(by\) as shown. The vertical rails are connected to each other with a resistance \(R\) between \(a\) and \(b\). A uniform magnetic field \(B\) is applied perpendicular to the plane \(abcd\) such that \(cd\) moves with a constant velocity of:

           

1. \({mgR \over Bl}\) 2. \({mgR \over B^2l^2}\)
3. \({mgR \over B^3l^3}\) 4. \({mgR \over B^2l}\)

Subtopic:  Motional emf |
 77%
Level 2: 60%+
Hints
Links

A conducting rod \(AC\) of length \(4l\) is rotated about point \(O\) in a uniform magnetic field \(\vec {B}\) directed into the paper. If \(AO = l\) and \(OC = 3l\), then:

   
1. \(V_{A} - V_{O} = \dfrac{B \omega l^{2}}{2}\)
2. \(V_{O} - V_{C} = \dfrac{7}{2} B \omega l^{2}\)
3. \(V_{A} - V_{C} = 4 B \omega l^{2}\)
4. \(V_{C} - V_{O} = \dfrac{9}{2} B \omega l^{2}\)

Subtopic:  Motional emf |
 59%
Level 3: 35%-60%
Hints
Links

The graph gives the magnitude \(B(t)\) of a uniform magnetic field that exists throughout a conducting loop, perpendicular to the plane of the loop. Rank the five regions of the graph according to the magnitude of the emf induced in the loop, greatest first:

1. \(b > (d = e) < (a = c)\)
2. \(b > (d = e) > (a = c)\)
3. \(b < d < e < c < a\)
4. \(b > (a = c) > (d = e)\)

Subtopic:  Faraday's Law & Lenz Law |
 62%
Level 2: 60%+
Hints
Links

advertisementadvertisement

A square loop of side \(5\) cm enters a magnetic field with \(1\) cms-1. If the front edge enters the magnetic field at \(t=0\), then which graph best depicts emf?

            

1.  2.
3. 4.
Subtopic:  Motional emf |
 61%
Level 2: 60%+
Hints
Links

A coil having number of turns \(N\) and cross-sectional area \(A\) is rotated in a uniform magnetic field \(B\) with an angular velocity \(\omega\). The maximum value of the emf induced in it is:
1. \(\frac{NBA}{\omega}\)
2. \(NBAω\)
3. \(\frac{NBA}{\omega^{2}}\)
4. \(NBAω^{2}\)

Subtopic:  Faraday's Law & Lenz Law |
 90%
Level 1: 80%+
Hints
Links

A long solenoid has \(1000\) turns. When a current of \(4\) A flows through it, the magnetic flux linked with each turn of the solenoid is \(4\times 10^{-3}\) Wb. The self-inductance of the solenoid is:
1. \(3\) H
2. \(2\) H
3. \(1\) H
4. \(4\) H

Subtopic:  Self - Inductance |
 89%
Level 1: 80%+
NEET - 2016
Hints
Links

advertisementadvertisement

A wire loop is rotated in a magnetic field. The frequency of change of direction of the induced e.m.f. is:

1. Twice per revolution 2. Four times per revolution
3. Six times per revolution 4. Once per revolution
Subtopic:  Faraday's Law & Lenz Law |
 72%
Level 2: 60%+
AIPMT - 2013
Hints
Links

A coil has \(500\) turns and the flux through the coil is \(\phi=3t^{2} +4t+9\) milliweber. The magnitude of induced emf between the ends of the coil at \(t = 5~\text{s}\) is:
1. \(34\) millivolt
2. \(17\) volt
3. \(17\) millivolt
4. \(34\) volt

Subtopic:  Faraday's Law & Lenz Law |
 64%
Level 2: 60%+
Hints
Links

The current \(i\) in an inductance coil varies with time \(t\) according to the graph shown in the figure. Which one of the following plots shows the variation of voltage in the coil with time?

      

1.  2.
3. 4.
Subtopic:  Self - Inductance |
 81%
Level 1: 80%+
Hints
Links

advertisementadvertisement

A bar magnet is released along the vertical axis of the conducting coil. The acceleration of the bar magnet is:

         

1. greater than \(g\). 2. less than \(g\).
3. equal to \(g\). 4. zero.
Subtopic:  Faraday's Law & Lenz Law |
 86%
Level 1: 80%+
Hints
Links