In a uniform magnetic field, a ring is rotating about its axis which is parallel to the magnetic field and the magnetic field is perpendicular to the plane of the ring. The induced electric field in the ring:

1. Is zero.
2. Depends on the radius of the ring.
3. Depends on the nature of the material of the ring.
4. Depends on the product of the magnetic field and speed.

Subtopic:  Motional emf |
 69%
Level 2: 60%+
Hints
Links

Calculate the self-inductance of a solenoid having \(1000\) turns and length \(1\) m. (The area of cross-section is \(7\) cm2 and \(\mu_r=1000).\)

1. \(888\) H

2. \(0.88\) H

3. \(0.088\) H

4. \(88.8\) H

Subtopic:  Self - Inductance |
 72%
Level 2: 60%+
Hints
Links

A rod having length \(l\) and resistance \(R_0\) is moving with a speed \(v\) as shown in the figure. The current through the rod is:
                            

1. \(\dfrac{B l v}{\frac{R_{1} R_{2}}{R_{1} + R_{2}} + R_{0}}\)

2. \(\dfrac{Blv}{\left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{o}}\right)^{2}}\)

3. \(\dfrac{B l v}{R_{1} + R_{2} + R_{0}}\)

4. \(\dfrac{B l v}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{0}}}\)

Subtopic:  Motional emf |
 67%
Level 2: 60%+
Hints
Links

advertisementadvertisement

A solenoid of inductance \(L\) and resistance \(R\) is connected to a battery of emf \(E.\) The maximum value of magnetic energy stored in the inductor is:
1. \(\dfrac{E^{2}}{2 R}\)
2. \(\dfrac{E^{2} L}{2 R^{2}}\)
3. \(\dfrac{E^{2} L}{R}\)
4. \(\dfrac{E^{2} L}{2 R}\)
Subtopic:  LR circuit |
 84%
Level 1: 80%+
Hints
Links

The coefficient of mutual inductance between two coils depends upon:

1. medium between coils
2. separation between coils
3. orientation of coils
4. All of these

Subtopic:  Mutual Inductance |
 88%
Level 1: 80%+
Hints
Links

A small square loop of wire of side \(l\) is placed inside a large square loop of side \(L\) \((L>>l)\). If the loops are coplanar and their centres coincide, the mutual inductance of the system is directly proportional to:
1. \(\dfrac{L}{l}\) 2. \(\dfrac{l}{L}\)
3. \(\dfrac{L^2}{l}\) 4. \(\dfrac{l^2}{L}\)
Subtopic:  Mutual Inductance |
 73%
Level 2: 60%+
Hints
Links

advertisementadvertisement

Two coils have a mutual inductance of \(5\) mH. The current changes in the first coil according to the equation \(I=I_{0}\cos\omega t,\) where \(I_{0}=10~\text{A}\) and \(\omega = 100\pi ~\text{rad/s}\). The maximum value of emf induced in the second coil is:
1. \(5\pi~\text{V}\)
2. \(2\pi~\text{V}\)
3. \(4\pi~\text{V}\)
4. \(\pi~\text{V}\)

Subtopic:  Mutual Inductance |
 82%
Level 1: 80%+
Hints
Links

The current through a choke coil increases from zero to \(6\) A in \(0.3\) seconds and an induced emf of \(30\) V is produced. The inductance of the coil is:
1. \(5\) H 2. \(2.5\) H
3. \(1.5\) H 4. \(2\) H
Subtopic:  Self - Inductance |
 91%
Level 1: 80%+
Hints
Links

A short magnet is allowed to fall along the axis of a horizontal metallic ring. Starting from rest, the distance fallen by the magnet in one second may be:

1. \(4\) m 2. \(5\) m
3. \(6\) m 4. \(7\) m
Subtopic:  Motional emf |
 64%
Level 2: 60%+
Hints
Links

advertisementadvertisement

The magnetic flux linked with a coil varies with time as \(\phi = 2t^2-6t+5,\) where \(\phi \) is in Weber and \(t\) is in seconds. The induced current is zero at:

1. \(t=0\) 2. \(t= 1.5~\text{s}\)
3. \(t=3~\text{s}\) 4. \(t=5~\text{s}\)
Subtopic:  Faraday's Law & Lenz Law |
 90%
Level 1: 80%+
Hints
Links