A straight current-carrying wire carrying current \(I\) passes perpendicular to the plane of an imaginary rectangular loop \(PQRS\), passing through its centre \(O\) (into the diagram). The diagonals intersect at \(60^\circ,\) and side \(PS\) is smaller than side \(PQ\). The value of \(\int \vec{B} \cdot d\vec{l}\) evaluated from \(P\) to \(Q\) (along \(PQ\)) has the magnitude:
1. \(\dfrac{\mu_{0} I}{6}\) 2. \(\dfrac{2 \mu_{0} I}{6}\)
3. \(\dfrac{4\mu_{0} I}{6}\) 4. \(\dfrac{5\mu_{0} I}{6}\)
Subtopic:  Ampere Circuital Law |
 51%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital