An infinitely long straight conductor carries a current of \(5~\text{A}\) as shown. An electron is moving with a speed of \(10^5~\text{m/s}\) parallel to the conductor. The perpendicular distance between the electron and the conductor is \(20~\text{cm}\) at an instant. Calculate the magnitude of the force experienced by the electron at that instant.

     
1. \(4\pi\times 10^{-20}~\text{N}\)
2. \(8\times 10^{-20}~\text{N}\)
3. \(4\times 10^{-20}~\text{N}\)
4. \(8\pi\times 10^{-20}~\text{N}\)

Subtopic:  Lorentz Force |
 64%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A uniform conducting wire of length \(12a\) and resistance '\(R\)' is wound up as a current carrying coil in the shape of,
(i) an equilateral triangle of side '\(a\)'
(ii) a square of side '\(a\)'
The magnetic dipole moments of the coil in each case respectively are:
1. \(3Ia^2~\text{and}~4Ia^2\)
2. \(4Ia^2~\text{and}~3Ia^2\)
3. \(\sqrt{3}Ia^2~\text{and}~3Ia^2\)
4. \(3Ia^2~\text{and}~Ia^2\)

Subtopic:  Magnetic Moment |
 60%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

In the product
\(\vec{F}=q\left ( \vec{v}\times \vec{B} \right )\)
\(~~~=q\vec{v}\times \left ( B\hat{i}+B\hat{j}+B_0\hat{k} \right )\)
For \(q=1\) and \(\vec{v}=2\hat{i}+4\hat{j}+6\hat{k}\) 
and \(\vec{F}=4\hat{i}-20\hat{j}+12\hat{k}\)
What will be the complete expression for \(\vec{B}\)?
1. \(8\hat{i}+8\hat{j}-6\hat{k}\)
2. \(6\hat{i}+6\hat{j}-8\hat{k}\)
3. \(-8\hat{i}-8\hat{j}-6\hat{k}\)
4. \(-6\hat{i}-6\hat{j}-8\hat{k}\)

Subtopic:  Lorentz Force |
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A thick current-carrying cable of radius '\(R\)' carries current \('I'\) uniformly distributed across its cross-section. The variation of magnetic field \(B(r)\) due to the cable with the distance '\(r\)' from the axis of the cable is represented by:

1.   2.
3. 4.
Subtopic:  Ampere Circuital Law |
 79%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A charged particle moves through a magnetic field in a direction perpendicular to it. Then:

1. the speed of the particle remains unchanged.

2. the direction of the particle remains unchanged.

3. the acceleration remains unchanged.

4. the velocity remains unchanged.

Subtopic:  Lorentz Force |
 76%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A long solenoid carrying a current produces a magnetic field \(B\) along its axis. If the current is doubled and the number of turns per cm is halved, what will be the new value of the magnetic field?
1. \(B/2\)
2. \(B\)
3. \(2B\)
4. \(4B\)

Subtopic:  Ampere Circuital Law |
 89%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

If the number of turns, area, and current through a coil are given by \(n\), \(A\) and \(i\) respectively then its magnetic moment will be: 
1. \(niA\)
2. \(n^{2}iA\)
3. \(niA^{2}\)
4. \(\frac{ni}{\sqrt{A}}\)

Subtopic:  Magnetic Moment |
 91%
From NCERT
AIPMT - 2001
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The tangent galvanometer is used to measure: 
1.  Potential difference
2.  Current
3.  Resistance
4.  In measuring the charge

Subtopic:  Moving Coil Galvanometer |
 68%
From NCERT
AIPMT - 2001
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

In the Thomson mass spectrograph where EB the velocity of the undeflected electron beam will be:

1.  \(\frac{\left| \vec{E}\right|}{\left|\vec{B} \right|}\)
2. \(\vec{E}\times \vec{B}\)
3. \(\frac{\left| \vec{B}\right|}{\left|\vec{E} \right|}\)
4. \(\frac{E^{2}}{B^{2}}\)

Subtopic:  Lorentz Force |
 77%
From NCERT
AIPMT - 2001
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

An electron having mass 'm' and kinetic energy E enter in a uniform magnetic field B perpendicularly. Its frequency will be:

1. eEqVB

2. 2πmeB

3. eB2πm

4. 2meBE

Subtopic:  Lorentz Force |
 84%
From NCERT
AIPMT - 2001
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh