The potential on the surface of a spherical region varies from \(2\) V to \(4\) V from point to point. There are no charges in the interior of the region.
Assertion (A): The potential at the centre cannot be \(0\) V.
Reason (R): Potential in the interior of a sphere must always be greater than the potential on the surface.
 
1. (A) is true but (R) is false.
2. (A) is false but (R) is true.
3. Both (A) and (R) are true and (R) is the correct explanation of (A).
4. Both (A) and (R) are true but (R) is not the correct explanation of (A).
Subtopic:  Electric Potential |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A thin conducting spherical shell of radius \(R\) has a charge \(Q\) which is uniformly distributed on its surface. The correct plot for electrostatic potential due to this spherical shell is:

1. 2.  
3. 4.
Subtopic:  Electric Potential |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A positive charge q and a negative charge -q are placed at x= -a and x= +a respectively. The variation of V along x-axis is represented by the graph:

1.  2.
3. 4.
Subtopic:  Electric Potential |
 62%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh