1. | \(300\) K | 2. | \(\dfrac{300}{2^{5/3}}\) K |
3. | \(\dfrac{300}{2^{2/3}}\) K | 4. | \(600\) K |
1. | \(\theta_A=\theta_B\) |
2. | \(\theta_A<\theta_B\) |
3. | \(\theta_A>\theta_B\) |
4. | the relationship between \(\theta_A,\theta_B\) depends on the molecular weights of \(A\) and \(B\) |
1. | the pressure is halved |
2. | \(2\sqrt 2\) | the pressure decreases by a factor of
3. | the temperature is halved |
4. | the temperature decreases by a factor of \(2 \sqrt 2\) |
1. | \(a-\)isothermal | 2. | \(c-\)isothermal |
\(b-\)adiabatic, diatomic gas | \(b-\)adiabatic, diatomic gas | ||
\(c-\)adiabatic, monoatomic gas | \(a-\)adiabatic, monoatomic gas | ||
3. | \(c-\)isothermal | 4. | \(a-\)isothermal |
\(b-\)adiabatic, monoatomic gas | \(b-\)adiabatic, monoatomic gas | ||
\(a-\)adiabatic, diatomic gas | \(c-\)adiabatic, diatomic gas |
1. | \(T_B=T_D\) |
2. | \(T_B>T_D\) |
3. | \(T_B<T_D\) |
4. | the relationship between \(T_B,T_D\) depends on whether the gas is monoatomic or diatomic. |
1. | \(a\)–isothermal, \(b\)–monatomic adiabatic, \(c\)–diatomic adiabatic |
2. | \(a\)–monatomic adiabatic, \(b\)–diatomic adiabatic, \(c\)–isothermal |
3. | \(a\)–diatomic adiabatic, \(b\)–monatomic adiabatic, \(c\)–isothermal |
4. | \(a\)–isothermal, \(b\)–diatomic adiabatic, \(c\)–monatomic adiabatic |
1. | \(Q_1=Q_2\) | 2. | \(5Q_1=3Q_2\) |
3. | \(Q_1=2Q_2\) | 4. | \(Q_2=2Q_1\) |