A uniform cylinder of mass \(M,\) radius \(R\) and height \(3R\) is placed upright on a horizontal surface. A particle of mass \(m\) is placed on the top of the cylinder at its edge. For what minimum value of \(m\) will the cylinder topple? 
                      
1. \(m = 3M\)
2. \(m= \dfrac {M}{3}\)
3. \(m= \dfrac {3M }{2}\)
4. No value of \(m\) will cause the cylinder to topple.

Subtopic:  Torque |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The moment of inertia of a uniform solid cube of mass \(M\) and edge \(L,\) about an axis passing through one of its edges is:
1. \(\dfrac{M L^{2}}{6}\) 2. \(\dfrac{M L^{2}}{3}\)
3. \(\dfrac{M L^{2}}{2}\) 4. \(\dfrac{2M L^{2}}{3}\)
Subtopic:  Moment of Inertia |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A uniform hollow cylindrical shell has an outer radius \(R_1\) and inner radius \(R_2\). If its mass be \(m\) then its rotational inertia about its axis is equal to:
1. \(\dfrac{1}{2} m\left(R_{2}^{2}-R_{1}^{2}\right)\)
2. \(\dfrac{1}{2} m\left(R_{2}^{2}+R_{1}^{2}\right)\)
3. \(\dfrac{1}{2} m~ \dfrac{R_{2}^{3}-R_{1}^{3}}{R_{2}-R_{1}}\)
4. \(\dfrac{1}{2} m~ \dfrac{R_{2}^{5}-R_{1}^{5}}{R_{2}^{3}-R_{1}^{3}}\)
Subtopic:  Moment of Inertia |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A thin spherical metallic vessel of radius \(R\) contains water, the mass of water being equal to the mass of the vessel that contains it. A hole is made in the bottom so that the water begins to flow out. When the vessel is half-empty the centre-of-mass is at a distance \(d\) from the centre of the vessel:
1. \(d=\dfrac{3 R}{16}\) 2. \(d=\dfrac{R}{2}\)
3. \(d=\dfrac{R}{4}\) 4. \(d=\dfrac{R}{8}\)
Subtopic:  Center of Mass |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A thin uniform hemispherical shell (radius: \(R,\) center: \(O\)) is cut into two symmetric quarter spheres by means of a vertical plane, as shown. The centre-of-mass of a quarter sphere is at a distance \(d\) from \(O\). Then \(d\)=    
1. \(\dfrac R2\) 2. \(\dfrac R{\sqrt2}\)
3. \(\dfrac R{4}\) 4. \(\dfrac R{2\sqrt2}\)
Subtopic:  Center of Mass |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A uniform solid hemisphere of mass \(m\) and radius \(R\) is rotated about an axis passing through its center \(O\) along a diameter of its flat surface. The moment of inertia of the hemisphere, about this axis, is:

1. \(\dfrac15mR^2\)
2. \(\dfrac25mR^2\)
3. \(\dfrac13mR^2\)
4. \(\dfrac23mR^2\)
Subtopic:  Moment of Inertia |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A uniform rod of mass \(M\) and length \(L\) lies at rest on a smooth horizontal plane, as shown in the figure. A particle of mass \(m,\) moving with an initial velocity \(u\) strikes one end \((A)\) of the rod and stops. The initial velocity \(u\) is perpendicular to the length \((AB)\) of the rod.
              
Consider the following statements:
(P) The momentum of the system is conserved.
(Q) The kinetic energy of the system does not change after the collision.
(R) The angular momentum of the system is conserved.

Choose the correct option from the given ones:
1. P, Q, and R are true.
2. P and R are true.
3. Only R is true.
4. Only P is true.
Subtopic:  Angular Momentum |
 52%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A block of mass \(m\) slides down the smooth inclined surface of a wedge of mass \(M\) starting from rest. The wedge is at rest on the horizontal surface beneath it, due to friction. The acceleration of the center of mass of the system of the block and the wedge is:
1. \(\dfrac{mg~\text{sin}\theta}{m+M}\) 2. \(\dfrac{mg~\text{cos}\theta}{m+M}\)
3. \(g~\text{sin}\theta\) 4. zero
Subtopic:  Center of Mass |
 52%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A block of mass \(m\) is placed atop another block of mass \(M,\) and the combination is at rest on a smooth horizontal table. A force \(F_1\) is applied to \(m\) and another force \(F_2\) is applied to \(M,\) the two acting horizontally and in opposite directions. Consider the following statements about the acceleration \((a_{cm})\) of the centre of mass of the system). 
(take right as positive)
                          
(A) \(a_{cm}=\dfrac{F_1-F_2}{m+M},\) if there is no friction acting between \(m\) and \(M\)
(B) \(a_{cm}=\dfrac{F_1-F_2}{m+M},\) if there is static friction between \(m\) and \(M\)
(C) \(a_{cm}=\dfrac{F_1-F_2}{m+M},\) in all situations
Choose the most appropriate option from the given ones:
1. only (A) is True.
2. only (B) is True.
3. (C) is True.
4. (A) and (B) are True but (C) is False.
Subtopic:  Center of Mass |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A horizontal force \(F\) is applied to a uniform solid sphere at rest, so that its line of action passes through the mid-point (\(P\)) of the vertical radius \(OA;O\) being the centre of the sphere (mass : \(m\)). The acceleration of the uppermost point \(A\) is:
          
 
1. equal to \(\dfrac{F}{m}.\)
2. greater than \(\dfrac{F}{m}.\)
3. less than \(\dfrac{F}{m}.\)
4. unpredictable, and depends on the radius of the sphere.
Subtopic:  Torque |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital