When a body of mass \(m\) just begins to slide as shown, match list-I with list-II:

List-I List-II
(a) Normal reaction (i) \(P\)
(b) Frictional force (fs) (ii) \(Q\)
(c) Weight (mg) (iii) \(R\)
(d) mgsin\(\theta ~\) (iv) \(S\)
  
Choose the correct answer from the options given below:
(a) (b) (c) (d)
1. (ii) (i) (iii) (iv)
2. (iv) (ii) (iii) (i)
3. (iv) (iii) (ii) (i)
4. (ii) (iii) (iv) (i)
Subtopic:  Application of Laws |
 84%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A ball of mass \(0.15~\text{kg}\) is dropped from a height \(10~\text{m}\), strikes the ground, and rebounds to the same height. The magnitude of impulse imparted to the ball is \((g=10 ~\text{m}/\text{s}^2)\) nearly:
1. \(2.1~\text{kg-m/s}\)
2. \(1.4~\text{kg-m/s}\)
3. \(0~\text{kg-m/s}\)
4. \(4.2~\text{kg-m/s}\)

Subtopic:  Application of Laws |
 55%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two bodies of mass, \(4~\text{kg}\) and \(6~\text{kg}\), are tied to the ends of a massless string. The string passes over a pulley, which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (\(g\)) is:

            

1. \(\frac{g}{2}\) 2. \(\frac{g}{5}\)
3. \(\frac{g}{10}\) 4. \(g\)

Subtopic:  Application of Laws |
 83%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A truck is stationary and has a bob suspended by a light string in a frame attached to the truck. The truck suddenly moves to the right with an acceleration of \(a.\) In the frame of the truck, the pendulum will tilt:

1.  to the left and the angle of inclination of the pendulum with the vertical is \(\text{sin}^{-1} \frac{a}{g}\)
2.  to the left and the angle of inclination of the pendulum with the vertical is \(\text{cos}^{-1} \frac{a}{g}\)
3.  to the left and the angle of inclination of the pendulum with the vertical is \(\text{tan}^{-1} \frac{a}{g}\)
4.  to the left and the angle of inclination of the pendulum with the vertical is \(\text{tan}^{-1} \frac{g}{a}\)
Subtopic:  Application of Laws |
 78%
From NCERT
NEET - 2019
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A block of mass \(m\) is placed on a smooth inclined wedge \(ABC\) of inclination \(\theta\) as shown in the figure. The wedge is given an acceleration '\(a\)' towards the right. The relation between \(a\) and \(\theta\) for the block to remain stationary on the wedge is:
          
1. \(a = \frac{g}{\text{cosec}\theta}\)
2. \(a = \frac{g}{\text{sin}\theta}\)
3. \(a = g~\text{cos}\theta\)
4. \(a = g~\text{tan}\theta\)

Subtopic:  Application of Laws |
 78%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A balloon with mass \(m\) is descending down with an acceleration \(a\) (where \(a<g\)). How much mass should be removed from it so that it starts moving up with an acceleration \(a\)?

1. \( \frac{2 m a}{g+a} \) 2. \( \frac{2 m a}{g-a} \)
3. \( \frac{m a}{g+a} \) 4. \( \frac{m a}{g-a}\)

Subtopic:  Application of Laws |
 62%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Three blocks with masses \(m\), \(2m\), and \(3m\) are connected by strings as shown in the figure. After an upward force \(F\) is applied on block \(m\), the masses move upward at constant speed \(v\). What is the net force on the block of mass \(2m\)? (\(g\) is the acceleration due to gravity)

           
1. \(2~mg\) 2. \(3~mg\)
3. \(6~mg\) 4. zero
Subtopic:  Application of Laws |
 75%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A person of mass \(60\) kg is inside a lift of mass \(940\) kg and presses the button on control panel. The lift starts moving upwards with an acceleration of \(1.0~\mathrm{ms^{-1}}\). If \(g=10~\mathrm{ms^{-2}}\), the tension in the supporting cable is:
1. \(9680~\mathrm{N}\)
2. \(11000~\mathrm{N}\)
3. \(1200~\mathrm{N}\)
4. \(8600~\mathrm{N}\)

Subtopic:  Application of Laws |
 93%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The mass of a lift is \(2000\) kg. When the tension in the supporting cable is \(28000\) N, then its acceleration is:
(Take \(g=10\) m/s2)

1. \(30\) ms-2 downwards 2. \(4\) ms-2 upwards
3. \(4\) ms-2 downwards 4. \(14\) ms-2 upwards
Subtopic:  Application of Laws |
 84%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A 0.5 kg ball moving with a speed of 12 m/s strikes a hard wall at an angle of 30° with the wall. It is reflected with the same speed and at the same angle. If the ball is in contact with the wall for 0.25 s, the average force acting on the wall is:
              

1. 48 N

2. 24 N

3. 12 N

4. 96 N

Subtopic:  Application of Laws |
 76%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh