The two nearest harmonics of a tube closed at one end and open at the other end are \(220\) Hz and \(260\) Hz. What is the fundamental frequency of the system? 
1. \(20\) Hz
2. \(30\) Hz
3. \(40\) Hz
4. \(10\) Hz

 

Subtopic:  Standing Waves |
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The second overtone of an open organ pipe has the same frequency as the first overtone of a closed pipe \(L\) meter long. The length of the open pipe will be:
1. \(L\)
2. \(2L\)
3. \(\frac{L}{2}\)
4. \(4L\)

Subtopic:  Standing Waves |
 76%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Three sound waves of equal amplitudes have frequencies of \((n-1),~n,\) and \((n+1).\) They superimpose to give beats. The number of beats produced per second will be:

1. \(1\) 2. \(4\)
3. \(3\) 4. \(2\)
Subtopic:  Beats |
 53%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of \(27^{\circ}\mathrm{C}\), to successive resonances are produced at \(20\) cm and \(73\) cm column length. If the frequency of the tuning fork is \(320\) Hz, the velocity of sound in air at \(27^{\circ}\mathrm{C}\) is:

1. \(330\) m/s 2. \(339\) m/s
3. \(350\) m/s 4. \(300\) m/s
Subtopic:  Speed of Sound |
 72%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is \(20~\text{cm}\), the length of the open organ pipe is:
1. \(13.2~\text{cm}\)
2. \(8~\text{cm}\)
3. \(12.5~\text{cm}\)
4. \(16~\text{cm}\)

Subtopic:  Standing Waves |
 62%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

An air column, closed at one end and open at the other, resonates with a tuning fork when the smallest length of the column is \(50\) cm. The next larger length of the column resonating with the same tuning fork will be:

1. \(100\) cm 2. \(150\) cm
3. \(200\) cm 4. \(66.7\) cm
Subtopic:  Standing Waves |
 79%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A uniform rope, of length \(L\) and mass \(m_1\), hangs vertically from a rigid support. A block of mass \(m_2\) is attached to the free end of the rope. A transverse pulse of wavelength \(\lambda_1\) is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is \(\lambda_2\). The ratio \(\frac{\lambda_2}{\lambda_1}\) is:
1. \(\sqrt{\frac{m_1+m_2}{m_2}}\)
2. \(\sqrt{\frac{m_2}{m_1}}\)
3. \(\sqrt{\frac{m_1+m_2}{m_1}}\)
4. \(\sqrt{\frac{m_1}{m_2}}\)

Subtopic:  Travelling Wave on String |
 69%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

\(4.0~\text{gm}\) of gas occupies \(22.4~\text{litres}\) at NTP. The specific heat capacity of the gas at a constant volume is  \(5.0~\text{JK}^{-1}\text{mol}^{-1}.\) If the speed of sound in the gas at NTP is \(952~\text{ms}^{-1},\) then the molar heat capacity at constant pressure will be: (\(R=8.31~\text{JK}^{-1}\text{mol}^{-1}\)

1. \(8.0~\text{JK}^{-1}\text{mol}^{-1}\)  2. \(7.5~\text{JK}^{-1}\text{mol}^{-1}\)
3. \(7.0~\text{JK}^{-1}\text{mol}^{-1}\) 4. \(8.5~\text{JK}^{-1}\text{mol}^{-1}\)
Subtopic:  Speed of Sound |
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A string is stretched between fixed points separated by \(75.0~\text{cm}\). It is observed to have resonant frequencies of \(420~\text{Hz}\) and \(315~\text{Hz}\). There are no other resonant frequencies between these two. The lowest resonant frequency for this string is:
1. \( 155 \mathrm{~Hz} \)
2. \( 205 \mathrm{~Hz} \)
3. \( 10.5 \mathrm{~Hz} \)
4. \( 105 \mathrm{~Hz}\)

Subtopic:  Standing Waves |
 78%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The fundamental frequency of a closed organ pipe of a length \(20\) cm is equal to the second overtone of an organ pipe open at both ends. The length of the organ pipe open at both ends will be:

1. \(80\) cm 2. \(100\) cm
3. \(120\) cm 4. \(140\) cm
Subtopic:  Standing Waves |
 77%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh