On a new scale of temperature, which is linear and called the \(\text{W}\) scale, the freezing and boiling points of water are \(39^\circ ~\text{W}\) and \(239^\circ ~\text{W}\) respectively. What will be the temperature on the new scale corresponding to a temperature of \(39^\circ ~\text{C}\) on the Celsius scale?
1. \(78^\circ ~\text{W}\)
2. \(117^\circ ~\text{W}\)
3. \(200^\circ ~\text{W}\)
4. \(139^\circ ~\text{W}\)

Subtopic:  Temperature and Heat |
 85%
Level 1: 80%+
AIPMT - 2008
Hints

A black body at \(227^{\circ}~\mathrm{C}\) radiates heat at the rate of \(7~ \mathrm{cal-cm^{-2}s^{-1}}\).  At a temperature of \(727^{\circ}~\mathrm{C}\), the rate of heat radiated in the same units will be:
1. \(60\)
2. \(50\)
3. \(112\)
4. \(80\)

Subtopic:  Stefan-Boltzmann Law |
 86%
Level 1: 80%+
AIPMT - 2009
Hints
Links

On observing light from three different stars \(P,\) \(Q,\) and \(R,\) it was found that the intensity of the violet colour is maximum in the spectrum of \(P,\) the intensity of the green colour is maximum in the spectrum of \(R\) and the intensity of the red colour is maximum in the spectrum of \(Q.\) If \(T_P,\) \(T_Q,\) and \(T_R\) are the respective absolute temperatures of \(P,\) \(Q,\) and \(R,\) then it can be concluded from the above observations that:
1. \(T_P>T_Q>T_R\)
2. \(T_P>T_R>T_Q\)
3. \(T_P<T_R<T_Q\)
4. \(T_P<T_Q<T_R\)

Subtopic:  Wien's Displacement Law |
 68%
Level 2: 60%+
NEET - 2015
Hints
Links

advertisementadvertisement

The coefficient of linear expansion of brass and steel rods are \(\alpha_1\) and \(\alpha_2\). Lengths of brass and steel rods are \(L_1\) and \(L_2\) respectively. If \((L_2-L_1)\) remains the same at all temperatures, which one of the following relations holds good?
1. \(\alpha_1L_2^2=\alpha_2L_1^2\)
2. \(\alpha_1^2L_2=\alpha_2^2L_1\)
3. \(\alpha_1L_1=\alpha_2L_2\)
4. \(\alpha_1L_2=\alpha_2L_1\)

Subtopic:  Thermal Expansion |
 89%
Level 1: 80%+
NEET - 2016
Hints
Links

Two rods \(A\) and \(B\) of different materials are welded together as shown in the figure. Their thermal conductivities are \(K_1\) and \(K_2.\) The thermal conductivity of the composite rod will be:
             

1. \(\dfrac{3(K_1+K_2)}{2}\) 2. \(K_1+K_2\)
3. \(2(K_1+K_2)\) 4. \(\dfrac{(K_1+K_2)}{2}\)
Subtopic:  Conduction |
 76%
Level 2: 60%+
NEET - 2017
Hints
Links

A black body at \(200~\text{K}\) is found to emit maximum energy at a wavelength of \(14~\mu \text{m}\). When its temperature is raised to \(1000~\text{K}\), the wavelength at which maximum energy is emitted will be:

1. \(14~\mu\text{m}\) 2. \(70~\mu\text{m}\)
3. \(2.8~\mu\text{m}\) 4. \(2.8~\text{nm}\)
Subtopic:  Wien's Displacement Law |
 86%
Level 1: 80%+
Hints
Links

advertisementadvertisement

The triple points of neon and carbon dioxide are \(24.57~\text K\) and \(216.55~\text K\) respectively. The value of these temperatures on Fahrenheit scales will be: 
1. \(-415.44^\circ ~\text{F} ,-69.88^\circ ~\text{F}\)
2. \(-248.58^\circ ~\text{F} ,-56.60^\circ~ \text{F}\)
3. \(315.44^\circ ~\text{F} ,-69.88^\circ ~\text{F}\)
4. \(415.44^\circ ~\text{F} ,-79.88^\circ~ \text{F}\)
Subtopic:  Temperature and Heat |
 69%
Level 2: 60%+
Hints
Links

A brass wire \(1.8~\text m\) long at \(27^\circ \text C\) is held taut with a little tension between two rigid supports. If the wire is cooled to a temperature of \(-39^\circ \text C,\) what is the tension created in the wire?
(Assume diameter of the wire to be \(2.0~\text{mm}\), coefficient of linear expansion of brass \(=2.0 \times10^{-5}~\text{K}^{-1},\) Young's modulus of brass\(=0.91 \times10^{11}~\text{Pa}\) )
1. \(3.8 \times 10^3~\text N\) 
2. \(3.8 \times 10^2~\text N\) 
3. \(2.9 \times 10^{-2}~\text N\) 
4. \(2.9 \times 10^{2}~\text N\) 

Subtopic:  Thermal Stress |
 69%
Level 2: 60%+
Hints
Links

The coefficient of area expansion \(\beta\) of a rectangular sheet of a solid in terms of the coefficient of linear expansion \(\alpha\) is:
1. \(2\alpha\)
2. \(\alpha\)
3. \(3\alpha\)
4. \(\alpha^2\)

Subtopic:  Thermal Expansion |
 90%
Level 1: 80%+
Hints
Links

advertisementadvertisement

When \(0.15\) kg of ice at \(0^\circ \text{C}\) is mixed with \(0.30\) kg of water at \(50^\circ \text{C}\) in a container, the resulting temperature is \(6.7^\circ \text{C}.\)
The heat of fusion of ice is: (\(S_{\text{water}}=4186\) J kg–1 K–1)
1. \( 3.43 \times 10^4\) Jkg–1
2. \( 3.34 \times 10^4\) Jkg–1
3. \( 3.34 \times 10^5\) Jkg–1
4. \(4.34 \times 10^5\) Jkg–1

Subtopic:  Calorimetry |
 58%
Level 3: 35%-60%
Hints
Links