(A) | \(\dfrac{\text{(Magnetic flux)}^2}{\text{Electrical resistance}}\) | (B) | \(\text{Torque}\times\text{time}\) |
(C) | \(\text{Momentum}\times\text{length}\) | (D) | \(\dfrac{\text{Power}}{\text{time}}\) |
(A) | \(\dfrac{\text{electric field }\times\text{ magnetic field}}{\mu_0}\) |
(B) | \(\dfrac{\varepsilon_0\times\text{(electric potential)}^2\times\text{ velocity}}{\text{area}}\) |
(C) | \(\dfrac{\text{power}}{\text{area}}\) |
List-I | List-II | ||
(a) | H/s | (i) | s2 |
(b) | H×A | (ii) | Wb |
(c) | H×F | (iii) | s |
(d) | \(\Omega\)×F | (iv) | \(\Omega\) |
1. | (a)–(ii), (b)–(iv), (c)–(i), (d)–(iii) |
2. | (a)–(iv), (b)–(ii), (c)–(i), (d)–(iii) |
3. | (a)–(iv), (b)–(ii), (c)–(iii), (d)–(i) |
4. | (a)–(ii), (b)–(iii), (c)–(iv), (d)–(i) |
List-I | List-II | ||
(a) | acceleration | (i) | \([M^0L^0T^0 ]\) |
(b) | torque | (ii) | \([ML^{-1}T^{-2} ]\) |
(c) | absorptive power | (iii) | \([LT^{-2} ]\) |
(d) | pressure | (iv) | \([ML^2T^{-2} ]\) |
1. | (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii) |
2. | (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv) |
3. | (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv) |
4. | (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i) |
List-I | List-II | ||
(a) | Ohm | (i) | \([ML^2T^{-2}A^{-1}]\) |
(b) | Farad | (ii) | \([ML^2T^{-2}A^{-2}]\) |
(c) | Henry | (iii) | \([M^{-1}L^{-2}T^4A^2]\) |
(d) | Weber | (iv) | \([ML^2T^{-3}A^{-2}]\) |
1. | (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii) |
2. | (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii) |
3. | (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv) |
4. | (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i) |
Which of the following equations is dimensionally correct?
\((I)~~ v=\sqrt{\dfrac{P}{\rho}}~~~~~~(II)~~v=\sqrt{\dfrac{mgl}{I}}~~~~~~(III)~~v=\dfrac{Pr^2}{2\eta l}\)
(where \(v=\) speed, \(P=\) pressure; \(r,\) \(l\) are lengths; \(\rho=\) density, \(m=\) mass, \(g=\) acceleration due to gravity, \(I=\) moment of inertia, and \(\eta=\) coefficient of viscosity)
1. | \(I~ \text{and}~II\) |
2. | \(I~ \text{and}~III\) |
3. | \(II~ \text{and}~III\) |
4. | \(I,~II~\text{and}~III\) |
List-I | List-II | ||
(a) | \({h} \) (Planck's constant) | (i) | \([MLT^{-1}]\) |
(b) | \({E} \) (kinetic energy) | (ii) | \([ML^2T^{-1}]\) |
(c) | \(V\) (electric potential) | (iii) | \([ML^2T^{-2}]\) |
(d) | \(p\) (linear momentum) | (iv) | \([ML^2A^{-1}T^{-3}]\) |
1. | (a) → (iii), (b) → (iv), (c) → (ii), (d) → (i) |
2. | (a) → (ii), (b) → (iii), (c) → (iv), (d) → (i) |
3. | (a) → (i), (b) → (ii), (c) → (iv), (d) → (iii) |
4. | (a) → (iii), (b) → (ii), (c) → (iv), (d) → (i) |
The following is/are not a unit of time:
(a) | second |
(b) | parsec |
(c) | year |
(d) | light year |
Choose the correct option:
1. | (a, c, d) |
2. | (a, c) |
3. | (b, d) |
4. | (b, c) |
Which of the following ratios, express pressure?
(a) | force/area |
(b) | energy/volume |
(c) | energy/area |
(d) | force/volume |
Choose the correct option:
1. | (a), (c) |
2. | (a), (d) |
3. | (b), (d) |
4. | (a), (b) |
If Planck's constant \((h)\) and speed of light in a vacuum \((c)\) are taken as two fundamental quantities, which one of the following can, in addition, be taken to express length, mass, and time in terms of the three chosen fundamental quantities?
(a) | mass of the electron \((m_e)\) |
(b) | universal gravitational constant \((G)\) |
(c) | charge of an electron \((e)\) |
(d) | mass of proton \((m_p)\) |
1. | (a), (c), and (d) only |
2. | (a), (b), and (d) only |
3. | (a), (b), and (c) only |
4. | (b), (c), and (d) only |