1. | \(\dfrac{3}{23}\) | 2. | \(\dfrac{7}{29}\) |
3. | \(\dfrac{9}{31}\) | 4. | \(\dfrac{5}{27}\) |
1. | the first line of the Lyman series. |
2. | the second line of the Balmer series. |
3. | the first line of the Paschen series. |
4. | the second line of the Paschen series. |
1. | \(5\rightarrow 4\) | 2. | \(3\rightarrow 2\) |
3. | \(2\rightarrow 1\) | 4. | \(3\rightarrow 1\) |
The wavelength of the first line of the Lyman series for a hydrogen atom is equal to that of the second line of the Balmer series for a hydrogen-like ion. What is the atomic number \(Z\) of hydrogen-like ions?
1. \(4\)
2. \(1\)
3. \(2\)
4. \(3\)
1. \(2000~\mathring{A}\)
2. \(4000~\mathring{A}\)
3. \(4500~\mathring{A}\)
4. \(9000~\mathring{A}\)
The ionisation potential of the hydrogen atom is \(13.6~\text{eV}.\) The hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy of \(12.1~\text{eV}.\) According to Bohr’s theory, the spectral lines emitted by hydrogen atoms will be:
1. two
2. three
3. four
4. one