Four electric charges \(+ q,\) \(+ q,\) \(- q\) and \(- q\) are placed at the corners of a square of side \(2L\) (see figure). The electric potential at the point \(A\), mid-way between the two charges \(+ q\) and \(+ q\) is:
              
1. \(\frac{1}{4 \pi\varepsilon_{0}} \frac{2 q}{L} \left(1 + \frac{1}{\sqrt{5}}\right)\)
2. \(\frac{1}{4 \pi\varepsilon_{0}} \frac{2 q}{L} \left(1 - \frac{1}{\sqrt{5}}\right)\)
3. zero
4. \(\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{L} \left(1 + \sqrt{5}\right)\)

Subtopic:  Electric Potential |
 75%
Level 2: 60%+
AIPMT - 2011
Hints
Links

Three concentric spherical shells have radii \(a,b, ~\text{and}~c\) \((a<b<c)\) and have surface charge densities \(\sigma, -\sigma, ~\text{and}~\sigma\) respectively. If \(V_A, V_B~\text{and}~V_C\) denote the potential of the three shells, and \(c= a+b\), it can be concluded that:
1. \(\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{A}} \neq \mathrm{V}_{\mathrm{B}}\)
2. \(\mathrm{V}_{\mathrm{C}}=\mathrm{V}_B \neq \mathrm{V}_{\mathrm{A}}\)
3. \(\mathrm{V}_{\mathrm{C}} \neq \mathrm{V}_B \neq \mathrm{V}_A\)
4. \(\mathrm{V}_{\mathrm{C}}=\mathrm{V}_B=\mathrm{V}_A\)

Subtopic:  Electric Potential |
Level 3: 35%-60%
AIPMT - 2009
Hints
Links

The electric potential at a point in free space due to a charge \(Q\) coulomb is \(Q\times10^{11}~\text{V}\). The electric field at that point is:
1. \(4\pi \varepsilon_0 Q\times 10^{22}~\text{V/m}\)
2. \(12\pi \varepsilon_0 Q\times 10^{20}~\text{V/m}\)
3. \(4\pi \varepsilon_0 Q\times 10^{20}~\text{V/m}\)
4. \(12\pi \varepsilon_0 Q\times 10^{22}~\text{V/m}\)

Subtopic:  Relation between Field & Potential |
 73%
Level 2: 60%+
AIPMT - 2008
Hints
Links

advertisementadvertisement

Two condensers, one of capacity \(C\) and the other of capacity \(\frac{C}2\) are connected to a \(V\) volt battery, as shown in the figure. 
           
The energy stored in the capacitors when both condensers are fully charged will be:
1. \(2CV^2\)
2. \({1 \over4}CV^2\)
3. \({3 \over4}CV^2\)
4. \({1 \over2}CV^2\)

Subtopic:  Energy stored in Capacitor |
 84%
Level 1: 80%+
AIPMT - 2007
Hints
Links

An electric dipole of moment \(\vec {p} \) is lying along a uniform electric field \(\vec{E}.\) The work done in rotating the dipole by \(90^{\circ}\) is:
1. \(\sqrt{2}pE\)
2. \(\dfrac{pE}{2}\)
3. \(2pE\)
4. \(pE\)

Subtopic:  Energy of Dipole in an External Field |
 83%
Level 1: 80%+
AIPMT - 2006
Hints
Links

Maximum charge stored on a metal sphere of radius \(15\) cm may be \(7.5~\mu\text{C}\). The potential energy of the sphere in this case is:
1. \(9.67\) J
2. \(0.25\) J
3. \(3.25\) J
4. \(1.69\) J

Subtopic:  Energy stored in Capacitor |
 53%
Level 3: 35%-60%
Hints
Links

advertisementadvertisement

The electrostatic force between the metal plates of an isolated parallel plate capacitor \(C\) having a charge \(Q\) and area \(A\) is:

1. independent of the distance between the plates.
2. linearly proportional to the distance between the plates.
3. proportional to the square root of the distance between the plates.
4. inversely proportional to the distance between the plates.
Subtopic:  Capacitance |
 63%
Level 2: 60%+
NEET - 2018
Hints
Links

An electric dipole with dipole moment \(\vec{p} = \left(3 \hat{i} + 4 \hat{j}\right) \times 10^{- 30}~\text{C-m}\) is placed in an electric field \(\vec{E} = 4000 \hat{i} ~\text{N/C}\). An external agent turns the dipole slowly until its electric dipole moment becomes \(\left(- 4 \hat{i} + 3 \hat{j}\right) \times 10^{- 30}~\text{C-m}\). The work done by the external agent is equal to:
1. \(4\times 10^{-28}~\text{J}\)
2. \(-4\times 10^{-28}~\text{J}\)
3. \(2.8\times 10^{-26}~\text{J}\)
4. \(-2.8\times 10^{-26}~\text{J}\)

Subtopic:  Energy of Dipole in an External Field |
Level 3: 35%-60%
Hints
Links

The variation of potential with distance \(x\) from a fixed point is shown in the figure. The electric field at \(x=13~\text m\) is:
     

1. \(7.5~\text{V/m}\) 2. \(-7.5~\text{V/m}\)
3. \(5~\text{V/m}\) 4. \(-5~\text{V/m}\)
Subtopic:  Relation between Field & Potential |
 52%
Level 3: 35%-60%
Hints
Links

advertisementadvertisement

In the circuit diagram shown all the capacitors are in  \(\mu \text{F} \).  The equivalent capacitance between points, \(A\) & \(B\) is (in \(\mu \text{F} \)):

 
1. \(\frac{14}{5}\)

2. \(7.5\)

3. \(\frac{3}{7}\)

4. None of these

Subtopic:  Combination of Capacitors |
 62%
Level 2: 60%+
Hints
Links