The electrostatic force between the metal plates of an isolated parallel plate capacitor \(C\) having a charge \(Q\) and area \(A\) is:

1. independent of the distance between the plates
2. linearly proportional to the distance between the plates
3. proportional to the square root of the distance between the plates
4. inversely proportional to the distance between the plates

Subtopic:  Capacitance |
 60%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A capacitor of \(2~\mu\text{F}\) is charged as shown in the figure. When the switch \({S}\) is turned to position \(2,\), the percentage of its stored energy dissipated is:

       
1. \(20\%\)
2. \(75\%\)
3. \(80\%\)
4. \(0\%\)
Subtopic:  Energy stored in Capacitor |
 72%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

If potential \([\text{in volts}]\) in a region is expressed as \(V[x,y,z] = 6xy-y+2yz,\) the electric field \([\text{in N/C}]\) at point \((1, 1, 0)\) is:

1. \(- \left(3 \hat{i} + 5 \hat{j} + 3 \hat{k}\right)\) 2. \(- \left(6 \hat{i} + 5 \hat{j} + 2 \hat{k}\right)\)
3. \(- \left(2 \hat{i} + 3 \hat{j} + \hat{k}\right)\) 4. \(- \left(6 \hat{i} + 9 \hat{j} + \hat{k}\right)\)
Subtopic:  Relation between Field & Potential |
 84%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A parallel plate air capacitor has capacitance \(C,\) the distance of separation between plates is \(d\) and potential difference \(V\) is applied between the plates. The force of attraction between the plates of the parallel plate air capacitor is:

1. \(\frac{C^2V^2}{2d}\) 2. \(\frac{CV^2}{2d}\)
3. \(\frac{CV^2}{d}\) 4. \(\frac{C^2V^2}{2d^2}\)
Subtopic:  Capacitance |
 70%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two thin dielectric slabs of dielectric constants \(K_1\) and \(K_2\) \((K_1<K_2)\) are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field \('E'\) between the plates with distance \('d'\) as measured from the plate \(P\) is correctly shown by: 

   
1. 2.
3. 4.
Subtopic:  Dielectrics in Capacitors |
 77%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

In a region, the potential is represented by \(V=(x,y,z)=6x-8xy-8y+6yz,\) where \(V\) is in volts and \(x,y,z\) are in meters. The electric force experienced by a charge of \(2\) coulomb situated at a point \((1,1,1)\) is:
1. \(6\sqrt{5}~\text{N}\)
2. \(30~\text{N}\)
3. \(24~\text{N}\)
4. \(4\sqrt{35}~\text{N}\)

Subtopic:  Relation between Field & Potential |
 74%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

\(A\), \(B\) and \(C\) are three points in a uniform electric field. The electric potential is: 

     
1. maximum at \(B\)
2. maximum at \(C\)
3. same at all the three points \(A, B\) and \(C\)
4. maximum at \(A\)
Subtopic:  Relation between Field & Potential |
 84%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

An electric dipole of moment \(p\) is placed in an electric field of intensity \(E.\) The dipole acquires a position such that the axis of the dipole makes an angle \(\theta\) with the direction of the field. Assuming that the potential energy of the dipole to be zero when \(\theta = 90^{\circ}\), the torque and the potential energy of the dipole will respectively be:
1. \(pE\text{sin}\theta, ~-pE\text{cos}\theta\)
2. \(pE\text{sin}\theta, ~-2pE\text{cos}\theta\)
3. \(pE\text{sin}\theta, ~2pE\text{cos}\theta\)
4. \(pE\text{cos}\theta, ~-pE\text{sin}\theta\)

Subtopic:  Energy of Dipole in an External Field |
 81%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Three capacitors each of capacitance \(C\) and of breakdown voltage \(V\) are joined in series. The capacitance and breakdown voltage of the combination will be:
1. C3, V3

2. 3C, V3

3. C3, 3V

4. \(3C,~3V\)

Subtopic:  Combination of Capacitors |
 81%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The electric potential at a point (x, y, z) is given by V = -x2y - xz3 + 4.
The electric field E at that point is:
1. E= (2xy + z3)i^ + x2j^ + 3xz2k^
2. E = 2xyi^ + (x2 +y2)j^ +(3xz-y2)k^
3. E = z3i^ + xyzj^ + z2k^
4. E = (2xy- z3)i^ + xy2j^ + 3z2xk^
Subtopic:  Relation between Field & Potential |
 80%
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links