In stationary waves, the distance between a node and its nearest antinode is 20 cm. The phase difference between two particles having a separation of 60 cm will be :

(1) Zero

(2) π/2

(3) π

(4) 3π/2

Subtopic:  Standing Waves |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A standing wave is represented by

Y=Asin(100t)cos(0.01x)

where Y and A are in millimetre, t is in seconds and x is in metre. The velocity of the wave is :

(1) 104 m/s

(2) 1 m/s

(3) 10–4 m/s

(4) Not derivable from the above data

Subtopic:  Standing Waves |
 84%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two waves are approaching each other with a velocity of 20 m/s and frequency n. The distance between two consecutive nodes is :

(1) 20n

(2) 10n

(3) 5n

(4) n10

Subtopic:  Standing Waves |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The following equations represent progressive transverse waves Z1=Acos(ωtkx), Z2=Acos(ωt+kx), Z3=Acos(ωt+ky) and Z4=Acos(2ωt2ky). A stationary wave will be formed by superposing :

(1) Z1 and Z2

(2) Z1 and Z4

(3) Z2 and Z3

(4) Z3 and Z4

Subtopic:  Standing Waves |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two traveling waves y1=Asin[k(xct)] and y2=Asin[k(x+ct)] are superimposed on the string. The distance between adjacent nodes is :

(1) ct / π

(2) ct / 2π

(3) π / 2k

(4) π / k

Subtopic:  Standing Waves |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A string fixed at both ends is vibrating in two segments. The wavelength of the corresponding wave is :

(1) l4

(2) l2

(3) l

(4) 2l

Subtopic:  Travelling Wave on String |
 64%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A 1 cm long string vibrates with the fundamental frequency of 256 Hz. If the length is reduced to 14cm  keeping the tension unaltered, the new fundamental frequency will be :

(1) 64

(2) 256

(3) 512

(4) 1024

Subtopic:  Travelling Wave on String |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Standing waves are produced in a 10 m long stretched string. If the string vibrates in 5 segments and the wave velocity is 20 m/s, the frequency is :

(1) 2 Hz

(2) 4 Hz

(3) 5 Hz

(4) 10 Hz

Subtopic:  Standing Waves |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A string is producing transverse vibration whose equation is y=0.021sin(x+30t), Where x and y are in meters and t is in seconds. If the linear density of the string is 1.3×10–4 kg/m, then the tension in the string in N will be :

(1) 10

(2) 0.5

(3) 1

(4) 0.117

Subtopic:  Travelling Wave on String |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A stretched string of length l, fixed at both ends can sustain stationary waves of wavelength λ, given by 

(1) λ=n22l

(2) λ=l22n

(3) λ=2ln

(4) λ=2ln

Subtopic:  Standing Waves |
 69%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh